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ABSTRACT
Stress-strength models have special importance in reliability literature and engineer-
ing applications. This paper consists of the estimation problem of a stress-strength
model with a multi-component system, i.e., a system that can be regarded to be
alive if at least s out of k (s ≤ k) strength components exceed the stress component.
The reliability of such a system has been obtained when both the stress and the
strength variables have Geometric distributions. UMVUE of Rs,k is obtained based
on upper record values. Bayesian estimators under the squared error loss function
using the conjugate beta prior distributions have been obtained. A simulation study
has been implemented to assess the performance of estimates.
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1. Introduction

Record values can be viewed as order statistics, especially closely connected to extreme
order statistics, whose size is determined by the values and the order of occurrence of
the observations. These record values are more interesting in reliability and survival
analysis when the products fail under stress [10]. In this setting, the savings of the
cost of the experiment may be considerable if observations are made sequentially
and record values are registered. Record values and record statistics are very popular
because they arise naturally in many fields of study, like climatology, hydrology,
geology, sports, medicine, and so on. The distribution of record values was found in
[18] and [21]. It should be noted that the amount of information provided by records
is considerable [28]. It has already been proven that upper record values contain
more information than the same number of i.i.d. (independently and identically
distributed) observations [14]. Another example that Computer Science with a linear
search algorithm, where comparisons are made to determine the maximum element
in a set.

In statistical inference literature, the renowned stress-strength model, i.e., R =
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P (X ≤ Y ), measures the difference between two populations. This model has various
applications in different fields of science, such as reliability, quality control, demand-
supply systems, and medicine, etc. In reliability theory, if X represents the applied
stress on a component by the operating environment and Y is that component’s in-
herent strength or resistance, then R is the probability that the component performs
satisfactorily.

A study on the estimation of R when X and Y are independently distributed ge-
ometric random variables was done by [11]. Bayes estimates of the same have been
found in [2]. A study on different types of estimation processes of the negative binomial
distribution was considered in [8] and [15] in the context of a system reliability. Some
studies of estimation of R using Poisson distribution found in [4] and [5]. There is a
study of the application of log series distribution in [13]. [6] considered the power-series
distributions in this case. E-Bayesian estimation of geometric model using record val-
ues was considered in [22].

Some authors have considered continuous distribution in finding the stress-strength
reliability R. For example, [16] used the Gompertz distribution. Weibull distribution
was used by [14]. Type-II censored data for the Rayleigh distribution was used for find-
ing the Bayes estimate of R, done by [1]. [12] used exponential-Poisson distribution, [9]
used generalized exponential distribution, and [7] used inverted gamma distribution
to estimate R using the Bayesian method. A few more studies on reliability can be
found in [23], [24], [25].

The motivation for considering the geometric distribution is that this type of model
can be found, e.g., in hydrology and climatology, while modelling durations of vari-
ous phenomena, like droughts, cold and warm spells, and others. The number of time
intervals during this process remains above or below a level can be modeled using a
geometric distribution (see [29] and [30]).

When some prior information regarding the parameter(s) of the distribution is avail-
able, one can utilise it in the Bayesian inference study. The Bayes estimate is expected
to be more efficient than the classical parametric estimates, as some prior information
is incorporated into the former. In this article, we aim to determine the Bayes estimates
of the stress-strength reliability (R) under the squared error loss (SEL) function.

Generally, we came across a single stress-strength component system. But in sev-
eral practical scenarios, we have more than one strength(or stress), where a system
has more than one component, each of which has its own strength. Multi-component
stress strength models are useful in communication and industrial systems to logistics,
and military systems. In this model, there is one stress X and k strength components
Y1, Y2, . . . , Yk. A system functions if at least s, 1 ≤ s ≤ k, the strength components are
not less than the stress component. In this system, the reliability parameter is Rs,k=
P{at least s out of (Y1, Y2, . . . , Yk)≥X}. Some common examples of multi-component
systems are “parallel and series circuits”. An aircraft generally contains four engines.
Aircraft can smoothly run only when at least 2 out of 4 engines work, i.e. 2-out-of-4
component system. An automobile with a V-8 engine that works if at least 4 out of 8
cylinders rung, i.e. “4-out-of-8:G” system. A suspension bridge consists of k number
of vertical cable pairs. The bridge would survive if at least s out of k vertical cables
through the deck are not damaged.

The application of stress-strength reliability in multi-component systems based on
upper record values can be seen in several industrial tests, mainly where most of the
systems can’t survive when they are under high level of stress. As an example, an elec-
trical power station consists of eight generating units, and a light amount of electricity
is generated if at least six generating units are operating. In some experimental tests
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of energy, these power stations are exposed to very high stress to test their ability
to carry out their functions under high level of stress. As a result, most of them are
found to collapse immediately, but a few survive for a short period of time, which is
then recorded as the first observation of upper record values, if it occurs for a longer
period, it will be recorded as the 2nd observation of the sample and so on. In industry
and reliability tests, many products may fail to function in an environment of too
high temperature. In such experiments to get the precise point, measurements may
be made sequentially, and only values larger (or smaller) than all the previous ones
are recorded. In those cases, we prefer to use those recorded values for the studies.
Estimation of R for geometric distribution using lower record values was studied by
[19]. [20] also found the multi-component stress strength reliability model for Weibull
distribution.

This article is structured into the following topics. Section 2 details the funda-
mental model assumptions and the derivation of Rs,k and R. Subsequently, Section
3 presents the precise formulas for the Uniformly Minimum Variance Unbiased Esti-
mators (UMVUE) of Rs,k and R. Section 4 then focuses on developing the Bayesian
estimators for these same quantities. To validate the theoretical results, Section 5 of-
fers findings from a simulation study. Finally, Section 6 provides concluding thoughts
on the presented work.

2. Reliability models

Let the stress X and the strength Yi, i = 1, 2, ..., k be independent random variables
such that X∼Geometric(θ1) and Y∼Geometric(θ2). Let F (x) and G(y) be the
cumulative distribution function (c.d.f.)s of X and Y, respectively.

P (X = x) = θ1(1− θ1)
x−1 x = 1, 2, ....

F (x) = 1− (1− θ1)
x x = 1, 2, ....

and

P (Y = y) = θ2(1− θ2)
y−1 y = 1, 2, ....

G(y) = 1− (1− θ2)
y y = 1, 2, ....

Let Rs,k be the reliability of the stress-strength model with one stressX and k strength
components Yis

′, i = 1, 2, . . . , k where the system works if at least k out of s strength
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components work.

Rs,k = P [Ys,k ≥ X]

=

∞∑
x=1

P (Ys,k ≥ x)P (X = x)

=

∞∑
x=1

k∑
w=s

(
k

w

)
[1−G(x− 1)]w[G(x− 1)]k−wP (X = x)

=

∞∑
x=1

k∑
w=s

(
k

w

)
(1− θ2)

xw−w
k−w∑
u=0

(−1)u
(
k − w

u

)
(1− θ2)

(x−1)uP (X = x)

=

k∑
w=s

(
k

w

) k−w∑
u=0

(−1)u
(
k − w

u

)
ψ(θ1, θ2, w, u) (1)

where,

ψ(θ1, θ2, w, u) = E[(1− θ2)
(X−1)(w+u)]

=
θ1

1− (1− θ1)(1− θ2)w+u
.

For single component stress - strength reliability, R = θ1
1−(1−θ1)(1−θ2)

.

Let (R1, R2, ..., Rm) be first m observed upper record values from Geometric(θ) dis-
tribution. Then from [26], joint p.m.f. of (R1, R2, ..., Rm) becomes

P (R1 = r1, R2 = r2, .., Rm = rm|θ) = P (Rm = rm)

m−1∏
i=1

P (Ri = ri)

P (Ri > ri)

= θm(1− θ)rm−m, 1 ≤ r1 < r2 < ..... < rm.

(2)

By factorization theorem Rm is sufficient statistic for θ and

P (Rm = rm) =

(
rm − 1

m− 1

)
θm(1− θ)rm−m, rm = m,m+ 1, ... (3)

3. UMVUE of Rs,k and R

Within statistical inference, the Uniformly Minimum Variance Unbiased Estimator
(UMVUE) stands out as an optimal choice, offering a unique blend of unbiasedness
and minimal variance. By balancing accuracy (unbiasedness) and precision (minimum
variance), UMVUE emerges as an efficient and highly desirable estimator. So, we
obtain the expression of UMVUE of ϕ(θ) as general case in the following result.
Result: For any two integer α and β with α < m, UMVUE of ϕ(θ) = θα(1− θ)β is

ϕ̂(θ) =

(
Rm−α−β−1

m−α−1

)(
Rm−1
m−1

) Rm ≥ m+ β. (4)
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Proof: Since Rm is complete sufficient statistic for θ, UMVUE of ϕ(θ) can be calculated
by solving the following equation [27]

∞∑
rm=m

ξ(rm)P [Rm = rm|θ] = ϕ(θ)

or,

∞∑
rm=m

ξ(rm)

(
rm − 1

m− 1

)
θm(1− θ)rm−m = θα(1− θ)β

This can be rewritten as

∞∑
rm=m+β

[ξ(rm)

(
rm−1
m−1

)(
rm−α−β−1
m−α−1

) ](rm − α− β − 1

m− α− 1

)
θm−α(1− θ)rm−α−β−(m−α) = 1

if ξ(rm) = 0 for rm = m, ....,m+ β − 1. By using the completeness property, we get

ξ(rm) =

(
rm−α−β−1
m−α−1

)(
rm−1
m−1

) .

Finding the UMVUE Let (R1, R2, ..., Rm) and (T1, T2, ..., Tn) be first observed m
and n upper record values from Geometric(θ1) and Geometric(θ2) respectively. So,
Tn and Rm are complete sufficient statistic for θ1 and θ2 respectively.
Now,

ψ(θ1, θ2, w, u) =

∞∑
x=1

ψ2(x, θ2)ψ1(x, θ1) (5)

where, ψ2(x, θ2) = (1− θ2)
(x−1)(w+u) and ψ1(x, θ1) = θ1(1− θ1)

x−1.
By using the expression of UMVUE of ϕ(θ), we obtain the UMVUE of ψ2(x, θ2) for
fixed x as

ψ̂2(x, θ2) =

(
Rm−(x−1)(w+u)−1

m−1

)(
Rm−1
m−1

) Rm ≥ x(w + u)− 1

and UMVUE of ψ1(x, θ1) for fixed x as

ψ̂1(x, θ1) =

(
Tn−x−1

n−2

)(
Tn−1
n−1

) Tn ≥ x+ n− 1.

So,

ψ̂(θ1, θ2, w, u) =

min(Tn−n+1,Rm−m

w+u
+1)∑

x=1

(
Rm−(x−1)(w+u)−1

m−1

)(
Rm−1
m−1

) (
Tn−x−1

n−2

)(
Tn−1
n−1

) .
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Therefore

R̂s,k =

k∑
w=s

(
k

w

) k−w∑
u=0

(−1)u
(
k − w

u

)min(Tn−n+1,Rm−m

w+u
+1)∑

x=1

(
Rm−(x−1)(w+u)−1

m−1

)(
Rm−1
m−1

) (
Tn−x−1

n−2

)(
Tn−1
n−1

) .

(6)

And

R̂ =

min(Tn−n+1,Rm−m+1)∑
x=1

(
Rm−x
m−1

)(
Rm−1
m−1

) (Tn−x−1
n−2

)(
Tn−1
n−1

) .

4. Bayesian estimation

In this section, the Bayesian estimator of stress-strength reliability P(Y ≥ X) has
been found under the squared error loss (SEL) function. Let X∼ Geometric(θ1) and
Y∼ Geometric(θ2) independently. Then the p.d.f.s of X and Y are as follows,

f(x) = θ1(1− θ1)
x−1 x = 0, 1, 2, 3, ....

f(y) = θ2(1− θ2)
y−1 y = 0, 1, 2, 3, .....

Let (r1, r2, . . . , rm) be the first ’m’ observations of upper record values from
geometric(θ1). Then, the joint distribution of (R1, R2, . . . , Rm) is given by;

P (R1 = r1, R2 = r2, . . . , Rm = rm) = P (Rm = rm)

m−1∏
i=1

P (Ri = ri)

P (Ri > ri)

P (R = r) = θ1(1− θ1)
rm−1

m−1∏
i=1

θ1(1− θ1)
ri−1

(1− θ1)ri

= θ1(1− θ1)
rm−1(

θ1
1− θ1

)m−1

= θm1 (1− θ1)
rm−m

Similarly, let (t1, t2, . . . , tn) be the first ’n’ observations of upper record values from
geometric(θ2). Then, the joint distribution of (T1, T2, . . . , Tn) is given by;

P (T1 = t1, T2 = t2, . . . , Tn = tn) = P (Tn = tn)

n−1∏
i=1

P (Ti = ti)

P (Ti > ti)
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P (T = t) = θ2(1− θ2)
tn−1

n−1∏
i=1

θ2(1− θ2)
ti−1

(1− θ2)ti

= θ2(1− θ2)
tn−1(

θ2
1− θ2

)n−1

= θn2 (1− θ2)
tn−n

where by factorization theorem, rm and tn are the sufficient statistics for estimating
θ1 and θ2 respectively.

P (Rm = rm) =

(
rm − 1

m− 1

)
θm1 (1− θ1)

rm−m, rm = m,m+ 1, ...

P (Tn = tn) =

(
tn − 1

n− 1

)
θn2 (1− θ2)

tn−n, tn = n, n+ 1, ...

Now, we have assume that θ1 ∼ Beta(a1, b1) and θ2 ∼ (a2, b2) independently,

g(θ1) = θa1−1
1 (1− θ1)

b1−1/β(a1, b1)

g(θ2) = θa2−1
2 (1− θ2)

b2−1/β(a2, b2)

Therefore, the joint prior distribution of θ1 and θ2 is given by;

h(θ1, θ2) =
θa1−1
1 (1− θ1)

b1−1

β(a1, b1)

θa2−1
2 (1− θ2)

b2−1

β(a2, b2)
(7)

The posterior distribution of (θ1, θ2) for given (rm,tn) is;

π(θ1, θ2|rm, tn) =
θm+a1−1
1 (1− θ1)

rm−m+b1−1

β(m+ a1, rm −m+ b1)

θn+a2−1
2 (1− θ2)

tn−n+b2−1

β(n+ a2, tn − n+ b2)
(8)
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The Bayes estimate of R (stress-strength reliability) is given by;

ˆRs,k = E(R|rm, tn)

=

∫ 1

0

∫ 1

0

∞∑
x=1

P (Ys,k ≥ x)P (X = x)π(θ1, θ2|rm, tn)dθ1dθ2

=

∫ 1

0

∫ 1

0

∞∑
x=1

k∑
w=s

(
k

w

)
(1−G(x− 1))wG(x− 1)k−wP (X = x)π(θ1, θ2|rm, tn)dθ1dθ2

=

∫ 1

0

∫ 1

0

∞∑
x=1

k∑
w=s

(
k

w

)
(1− (1− (1− θ2)

x−1)w(1− (1− θ2)
x−1)k−w

θ1(1− θ1)
x−1π(θ1, θ2|rm, tn)dθ1dθ2

=

∫ 1

0

∫ 1

0

∞∑
x=1

k∑
w=s

(
k

w

)
(1− θ2)

(x−1)w(1− (1− θ2)
x−1)k−w

θ1(1− θ1)
x−1π(θ1, θ2|rm, tn)dθ1dθ2

=

∞∑
x=1

k∑
w=s

(
k

w

)∫ 1

0
θ1(1− θ1)

x−1 θ
m+a1−1
1 (1− θ1)

rm−m+b1−1

β(m+ a1, rm −m+ b1)
dθ1∫ 1

0
(1− θ2)

(x−1)w(1− (1− θ2)
(x−1))k−w θ

n+a2−1
2 (1− θ2)

tn−n+b2−1

β(n+ a2, tn − n+ b2
dθ2 (9)

Now, we find differently;

Iθ1 =

∫ 1

0
θ1(1− θ1)

x−1θm+a1+1
1 (1− θ1)

rm−m+b1−1dθ1

=

∫ 1

0
θm+a1+2
1 (1− θ1)

rm−m+b1+x−2dθ1

= β(m+ a1 + 1, rm −m+ b1 + x− 1) (10)

Iθ2 =

∫ 1

0
θn+a2−1
2 (1− θ2)

tn−n+b2−1(1− θ2)
w(x−1)(1− (1− θ2)

x−1)k−wdθ2

=

∫ 1

0
(1− θ2)

w(x−1){
(
k − w

0

)
(1− θ2)

0 −
(
k − w

1

)
(1− θ2)

(x−1) + . . .

+(−1)k−w

(
k − w

k − w

)
(1− θ2)

(k−w)(x−1)θn+a2−1
2 (1− θ2)

tn−n+b2−1dθ2

=

∫ 1

0

k−w∑
i=0

(−1)u
(
k − w

u

)
θn+a2−1
2 (1− θ2)

tn−n+b2+(w+u)(x−1)−1dθ2

=

k−w∑
u=0

(−1)u
(
k − w

u

)
β(n+ a2, tn − n+ b2 + (w + u)(x− 1)) (11)
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Finally, we found that;

ˆRs,k =

∞∑
x=1

k∑
w=s

(
k

w

)
Iθ1Iθ2 (12)

5. Simulation table

In this section, Monte Carlo simulations have been performed to compare different esti-
mators of Rs,k. We choose three models, i.e., 1-out-of-3, 3-out-of-3, and 3-out-of-6. We
study different upper record values sample sizes (m,n) ∈ {(5, 5); (5, 7), (7, 5), (7, 7)}.
We consider θ1 ∈ {0.1, 0.2, 0.5} and θ2 ∈ {0.1, 0.3, 0.7}. For each model and each
combination of (θ1, θ2) we generate a random sample of size (m,n) and calculate
UMVUE of Rs,k. In Bayesian section, we draw random sample of size (m,n) from the
prior distribution(s) of the parameter(s) of the stress (strength) distribution(s). The
combinations of those hyper-parameters (a1, b1, a2, b2) of the stress (strength) distri-
bution(s) are so chosen that the expected value of the parameter(s) is(are) equal to
the values of (θ1, θ2) taken into consideration; similar to the combinations used in
[17]. The procedure has 1000 replications. The tables 1,2 and 3 gives us the average of
the point estimates for R1,3, R3,3 and R3,6 under Bayesian set-up and their expected
loss respectively, whether in tables 4,5 and 6 we finds the average of the UMVUE of
R1,3, R3,3 and R3,6 and their variances respectively. We can see that in almost every
case, the UMVUEs as well as the Bayes estimates are closer to the actual value, and
their errors are decreasing with the increase of the sample sizes, which verifies the
consistency properties of the estimators.
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Table 1. Bayes estimates of R1,3 and their expected loss

Actual R a1 a2 a2 b2 E(p1) E(p2) m n Estimate Expected loss
0.918 2 8 1 9 0.2 0.1 5 5 0.85154 0.03676
0.918 2 8 1 9 0.2 0.1 5 7 0.92506 0.01874
0.918 2 8 1 9 0.2 0.1 7 5 0.91076 0.02892
0.918 2 8 1 9 0.2 0.1 7 7 0.92349 0.00909
0.993 5 5 1 9 0.5 0.1 5 5 0.99528 0.00012
0.993 5 5 1 9 0.5 0.1 5 7 0.99966 0.00004
0.993 5 5 1 9 0.5 0.1 7 5 0.99841 0.00040
0.993 5 5 1 9 0.5 0.1 7 5 0.99851 0.00004
0.652 2 8 3 7 0.2 0.3 5 5 0.66869 0.11555
0.652 2 8 3 7 0.2 0.3 5 7 0.74838 0.08137
0.652 2 8 3 7 0.2 0.3 7 5 0.60077 0.10734
0.652 2 8 3 7 0.2 0.3 7 7 0.66192 0.05430
0.924 5 5 3 7 0.5 0.3 5 5 0.93058 0.01200
0.924 5 5 3 7 0.5 0.3 5 7 0.90858 0.01152
0.924 5 5 3 7 0.5 0.3 7 5 0.92243 0.00931
0.924 5 5 3 7 0.5 0.3 7 7 0.92104 0.00653
0.347 2 8 7 3 0.2 0.7 5 5 0.32781 0.06144
0.347 2 8 7 3 0.2 0.7 5 7 0.32993 0.04820
0.347 2 8 7 3 0.2 0.7 7 5 0.33283 0.04284
0.347 2 8 7 3 0.2 0.7 7 7 0.34721 0.03507
0.701 5 5 7 3 0.5 0.7 5 5 0.69174 0.02184
0.701 5 5 7 3 0.5 0.7 5 7 0.68279 0.02182
0.701 5 5 7 3 0.5 0.7 7 5 0.69045 0.02022
0.701 5 5 7 3 0.5 0.7 7 7 0.69918 0.01824
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Table 2. Bayes estimates of R1,3 and their expected loss

Actual R a1 a2 a2 b2 E(p1) E(p2) m n Estimate Expected loss
0.48 2 8 1 9 0.2 0.1 5 5 0.59455 0.11681
0.48 2 8 1 9 0.2 0.1 5 7 0.40755 0.09124
0.48 2 8 1 9 0.2 0.1 7 5 0.60607 0.09425
0.48 2 8 1 9 0.2 0.1 7 7 0.48409 0.07789
0.787 5 5 1 9 0.5 0.1 5 5 0.77550 0.03241
0.787 5 5 1 9 0.5 0.1 5 7 0.77859 0.03077
0.787 5 5 1 9 0.5 0.1 7 5 0.78968 0.02529
0.787 5 5 1 9 0.5 0.1 7 7 0.78777 0.01975
0.276 2 8 3 7 0.2 0.3 5 5 0.24378 0.04518
0.276 2 8 3 7 0.2 0.3 5 7 0.26136 0.03919
0.276 2 8 3 7 0.2 0.3 7 5 0.26651 0.02906
0.276 2 8 3 7 0.2 0.3 7 7 0.27524 0.02315
0.604 5 5 3 7 0.5 0.3 5 5 0.58480 0.02833
0.604 5 5 3 7 0.5 0.3 5 7 0.61136 0.02516
0.604 5 5 3 7 0.5 0.3 7 5 0.61533 0.02686
0.604 5 5 3 7 0.5 0.3 7 7 0.60302 0.02334
0.204 2 8 7 3 0.2 0.7 5 5 0.19477 0.01499
0.204 2 8 7 3 0.2 0.7 5 7 0.19946 0.01488
0.204 2 8 7 3 0.2 0.7 7 5 0.01998 0.01457
0.204 2 8 7 3 0.2 0.7 7 7 0.20203 0.01079
0.507 5 5 7 3 0.5 0.7 5 5 0.48632 0.03746
0.507 5 5 7 3 0.5 0.7 5 7 0.51016 0.02903
0.507 5 5 7 3 0.5 0.7 7 5 0.50520 0.02575
0.507 5 5 7 3 0.5 0.7 7 7 0.50790 0.01703
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Table 3. Bayes estimates of R3,6 and their expected loss

Actual R a1 a2 a2 b2 E(p1) E(p2) m n Estimate Expected loss
0.48 2 8 1 9 0.2 0.1 5 5 0.83228 0.06317
0.48 2 8 1 9 0.2 0.1 5 7 0.82489 0.05177
0.48 2 8 1 9 0.2 0.1 7 5 0.81793 0.03504
0.48 2 8 1 9 0.2 0.1 7 7 0.82064 0.02348
0.982 5 5 1 9 0.5 0.1 5 5 0.98739 0.00107
0.982 5 5 1 9 0.5 0.1 5 7 0.98708 0.00090
0.982 5 5 1 9 0.5 0.1 7 5 0.98952 0.00185
0.982 5 5 1 9 0.5 0.1 7 7 0.98539 0.00070
0.484 2 8 3 7 0.2 0.3 5 5 0.50075 0.08146
0.484 2 8 3 7 0.2 0.3 5 7 0.46822 0.07569
0.484 2 8 3 7 0.2 0.3 7 5 0.48987 0.07089
0.484 2 8 3 7 0.2 0.3 7 7 0.48857 0.05798
0.839 5 5 3 7 0.5 0.3 5 5 0.84589 0.03894
0.839 5 5 3 7 0.5 0.3 5 7 0.82621 0.02878
0.839 5 5 3 7 0.5 0.3 7 5 0.84836 0.01790
0.839 5 5 3 7 0.5 0.3 7 7 0.84289 0.01778
0.242 2 8 7 3 0.2 0.7 5 5 0.21049 0.02343
0.242 2 8 7 3 0.2 0.7 5 7 0.22511 0.02107
0.242 2 8 7 3 0.2 0.7 7 5 0.24642 0.02020
0.242 2 8 7 3 0.2 0.7 7 7 0.23957 0.01621
0.565 5 5 7 3 0.5 0.7 5 5 0.54666 0.02230
0.565 5 5 7 3 0.5 0.7 5 7 0.58068 0.01435
0.565 5 5 7 3 0.5 0.7 7 5 0.56216 0.01714
0.565 5 5 7 3 0.5 0.7 7 7 0.56811 0.01386

26



Asian Journal of Statistics and Applications Halder, S. and Choudhury, M. M.

Table 4. UMVUE of R1,3 and their Variance

Actual R p1 p2 m n Estimate Variance
0.918 0.2 0.1 5 5 0.90666 0.02119
0.918 0.2 0.1 5 7 0.93510 0.02000
0.918 0.2 0.1 7 5 0.92183 0.02083
0.918 0.2 0.1 7 7 0.91666 0.01716
0.993 0.5 0.1 5 5 0.98500 0.00442
0.993 0.5 0.1 5 7 0.99583 0.00033
0.993 0.5 0.1 7 5 0.99538 0.00021
0.993 0.5 0.1 7 7 0.99238 0.00015
0.652 0.2 0.3 5 5 0.66841 0.08874
0.652 0.2 0.3 5 7 0.67421 0.02868
0.652 0.2 0.3 7 5 0.67502 0.02875
0.652 0.2 0.3 7 7 0.65740 0.01767
0.924 0.5 0.3 5 5 0.91208 0.01618
0.924 0.5 0.3 5 7 0.92900 0.01083
0.924 0.5 0.3 7 5 0.93183 0.01418
0.924 0.5 0.3 7 7 0.92059 0.00755
0.347 0.2 0.7 5 5 0.32417 0.06417
0.347 0.2 0.7 5 7 0.32365 0.06355
0.347 0.2 0.7 7 5 0.32517 0.05924
0.347 0.2 0.7 7 7 0.34261 0.02718
0.701 0.5 0.7 5 5 0.71390 0.04803
0.701 0.5 0.7 5 7 0.69125 0.02502
0.701 0.5 0.7 7 5 0.71710 0.02903
0.701 0.5 0.7 7 7 0.69489 0.02572
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Table 5. UMVUE of R3,3 and their Variance

Actual R p1 p2 m n Estimate Variance
0.480 0.2 0.1 5 5 0.46827 0.06691
0.480 0.2 0.1 5 7 0.48853 0.02748
0.480 0.2 0.1 7 5 0.48924 0.02713
0.480 0.2 0.1 7 7 0.47926 0.02463
0.787 0.5 0.1 5 5 0.78055 0.04729
0.787 0.5 0.1 5 7 0.78883 0.02694
0.787 0.5 0.1 7 5 0.78394 0.02651
0.787 0.5 0.1 7 7 0.78734 0.01799
0.276 0.2 0.3 5 5 0.26620 0.07042
0.276 0.2 0.3 5 7 0.27434 0.05518
0.276 0.2 0.3 7 5 0.27721 0.04524
0.276 0.2 0.3 10 10 0.27741 0.01159
0.603 0.5 0.3 5 5 0.58123 0.06846
0.603 0.5 0.3 5 7 0.59663 0.06021
0.603 0.5 0.3 7 5 0.59735 0.04816
0.603 0.5 0.3 10 10 0.60543 0.02918
0.204 0.2 0.7 5 5 0.21260 0.05638
0.204 0.2 0.7 5 7 0.18329 0.02695
0.204 0.2 0.7 7 5 0.19263 0.02631
0.204 0.2 0.7 10 10 0.20441 0.01016
0.507 0.5 0.7 5 5 0.49880 0.05937
0.507 0.5 0.7 5 7 0.51743 0.05288
0.507 0.5 0.7 7 5 0.50886 0.04086
0.507 0.5 0.7 7 7 0.50320 0.03624
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Table 6. UMVUE of R3,6 and their Variance

Actual R p1 p2 m n Estimate Variance
0.822 0.2 0.1 5 5 0.84166 0.04074
0.822 0.2 0.1 5 7 0.83166 0.04060
0.822 0.2 0.1 7 5 0.82750 0.04393
0.822 0.2 0.1 7 7 0.82000 0.02687
0.982 0.5 0.1 5 5 0.96750 0.01029
0.982 0.5 0.1 5 7 0.97500 0.01748
0.982 0.5 0.1 7 5 0.98484 0.00537
0.982 0.5 0.1 7 7 0.98452 0.00319
0.484 0.2 0.3 5 5 0.50754 0.07225
0.484 0.2 0.3 5 7 0.50817 0.06463
0.484 0.2 0.3 7 5 0.47547 0.05664
0.484 0.2 0.3 7 7 0.48768 0.02770
0.839 0.5 0.3 5 5 0.84347 0.07217
0.839 0.5 0.3 5 7 0.83976 0.04137
0.839 0.5 0.3 7 5 0.83541 0.03734
0.839 0.5 0.3 7 7 0.84018 0.02474
0.242 0.2 0.7 5 5 0.23614 0.04216
0.242 0.2 0.7 5 7 0.25416 0.03841
0.242 0.2 0.7 7 5 0.23867 0.03272
0.242 0.2 0.7 7 7 0.24559 0.01979
0.565 0.5 0.7 5 5 0.57643 0.05864
0.565 0.5 0.7 5 7 0.53650 0.05122
0.565 0.5 0.7 7 5 0.55138 0.03425
0.565 0.5 0.7 7 7 0.56281 0.02775
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6. Concluding remarks

In this paper, we considered the estimation of strength-stress probability in a multi-
component system, where both stress and strength come from the geometric distri-
bution. We have found the UMVUE and the Bayesian estimate of Rs,k using the
geometric upper record values in place of general sample observations. The Bayes es-
timates have been found based on the prior information. The simulation study results
slightly favour using upper record values with respect to of the usual random sample.
Scientists and practitioners are recommended to use the proposed estimate of Rs,k

using upper record samples.
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